111 research outputs found

    Natural origin products as a source of new antiviral molecules

    Get PDF
    Motivation: Human adenovirus (HAdV) is a DNA virus that can cause a wide range of diseases, including respiratory and gastrointestinal infections, or conjunctivitis, that in immunocompetent individuals are ausually mild and self-limited. However, in immunosuppresed people and especially in pediatric units, HAdV infections present high morbidity and mortality. Currently there is no specific treatment approved against HAdV. The aim of this work was to characterize the anti-HAdV activity of 18 compounds that were previously selected after high-troughput screening (HTP) of a library of 1340 compounds, coming from our collaboration with the European initiative COSTACTION CM 1407Methods: We had evaluated the anti-HAdV activity of the compounds performing in vitro assays: plaque assays to calculate the IC50 value, citotoxicity assays to calculate the CC50 value, yield reduction assays and qPCR in real time to evaluate the inhibitory effect, and nucleocitoplasm assays to evaluate their mechanism of action.Results: It has been proven that 2 compounds, BBN75 and GSAED772E-1S2R have a safe selectivity index, a great inhibitory effect and they may act in steps subsequent to the arrival of the viral genome at the nucleus of the host cell.Conclusions: The results indicates that BBN75 and GSAED772E-1S2R are promising anti-HAdV drugs to be evaluated at in vivo assays

    Prognostic value of replication errors on chromosomes 2p and 3p in non-small-cell lung cancer

    Get PDF
    As chromosomes 2p and 3p are frequent targets for genomic instability in lung cancer, we have addressed whether alterations of simple (CA)n DNA repeats occur in non-small-cell lung cancer (NSCLC) at early stages. We have analysed by polymerase chain reaction (PCR) assay replication errors (RER) and loss of heterozygosity (LOH) at microsatellites mapped on chromosomes 2p and 3p in 64 paired tumour-normal DNA samples from consecutively resected stage I, II or IIIA NSCLC. DNA samples were also examined for K-ras and p53 gene mutations by PCR-single-stranded conformational polymorphism (PCR-SSCP) analysis and cyclic sequencing, as well as their relationship with clinical outcome. Forty-two of the 64 (66%) NSCLC patients showed RER at single or multiple loci. LOH was detected in 23 tumours (36%). Among patients with stage I disease, the 5-year survival rate was 80% in those whose tumours had no evidence of RER and 26% in those with RER (P = 0.005). No correlation was established between RER phenotype and LOH, K-ras or p53 mutations. RER remained a strong predictive factor (hazard ratio for death, 2.89; 95% confidence interval, 2.23-3.79; P = 0.002) after adjustment for all other evaluated factors, including p53, K-ras, LOH, histological type, tumour differentiation and TNM stage, suggesting that microsatellite instability on chromosomes 2p and 3p may play a role in NSCLC progression through a different pathway from the traditional tumour mechanisms of oncogene activation and/or tumour-suppressor gene inactivation

    Leishmania spp. epidemiology of canine leishmaniasis in the Yucatan Peninsula

    Get PDF
    Canine Leishmaniasis is widespread in various Mexican states, where different species of Leishmania have been isolated from dogs. In the present study, we describe the detection of L. braziliensis, L. infantum, and L. mexicana in serum of dogs from the states of Yucatan and Quintana Roo in the Yucatan Peninsula (Mexico). A total of 412 sera were analyzed by ELISA using the total extract of the parasite and the iron superoxide dismutase excreted by different trypanosomatids as antigens. We found the prevalence of L. braziliensis to be 7.52%, L. infantum to be 6.07%, and L. mexicana to be 20.63%, in the dog population studied. The results obtained with ELISA using iron superoxide dismutase as the antigen were confirmed by western blot analysis with its greater sensitivity, and the agreement between the two techniques was very high

    Efficacy of CDK4/6 inhibitors in preclinical models of malignant pleural mesothelioma

    Full text link
    Background There is no effective therapy for patients with malignant pleural mesothelioma (MPM) who progressed to platinum-based chemotherapy and immunotherapy. Methods We aimed to investigate the antitumor activity of CDK4/6 inhibitors using in vitro and in vivo preclinical models of MPM. Results Based on publicly available transcriptomic data of MPM, patients with CDK4 or CDK6 overexpression had shorter overall survival. Treatment with abemaciclib or palbociclib at 100 nM significantly decreased cell proliferation in all cell models evaluated. Both CDK4/6 inhibitors significantly induced G1 cell cycle arrest, thereby increasing cell senescence and increased the expression of interferon signalling pathway and tumour antigen presentation process in culture models of MPM. In vivo preclinical studies showed that palbociclib significantly reduced tumour growth and prolonged overall survival using distinct xenograft models of MPM implanted in athymic mice. Conclusions Treatment of MPM with CDK4/6 inhibitors decreased cell proliferation, mainly by promoting cell cycle arrest at G1 and by induction of cell senescence. Our preclinical studies provide evidence for evaluating CDK4/6 inhibitors in the clinic for the treatment of MPM

    Modern venomics – Current insights, novel methods and future perspectives in biological and applied animal venom research

    Get PDF
    Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit

    Immunogenicity of High-Dose vs. MF59-adjuvanted vs. Standard Influenza Vaccine in Solid Organ Transplant Recipients: The STOP-FLU trial.

    Get PDF
    BACKGROUND The immunogenicity of the standard influenza vaccine is reduced in solid-organ transplant (SOT) recipients, so that new vaccination strategies are needed in this population. METHODS Adult SOT recipients from nine transplant clinics in Switzerland and Spain were enrolled if they were >3 months after transplantation. High, with stratification by organ and time from transplant. The primary outcome was vaccine response rate, defined as a ≄4-fold increase of hemagglutination-inhibition titers to at least one vaccine strain at 28 days post-vaccination. Secondary outcomes included PCR-confirmed influenza and vaccine reactogenicity. RESULTS 619 patients were randomized, 616 received the assigned vaccines, and 598 had serum available for analysis of the primary endpoint (standard, n=198; MF59-adjuvanted, n=205; high-dose, n=195 patients). Vaccine response rates were 42% (84/198) in the standard vaccine group, 60% (122/205) in the MF59-adjuvanted vaccine group, and 66% (129/195) in the high-dose vaccine group (difference in intervention vaccines vs. standard vaccine, 0.20 [97.5% CI 0.12-1]; p<0.001; difference in high-dose vs. standard vaccine, 0.24 [95% CI 0.16-1]; p<0.001; difference in MF59-adjuvanted vs. standard vaccine, 0.17 [97.5% CI 0.08-1]; p<0.001). Influenza occurred in 6% the standard, 5% in the MF59-adjuvanted, and 7% in the high-dose vaccine groups. Vaccine-related adverse events occurred more frequently in the intervention vaccine groups, but most of the events were mild. CONCLUSIONS In SOT recipients, use of an MF59-adjuvanted or a high-dose influenza vaccine was safe and resulted in a higher vaccine response rate. TRIAL REGISTRATION Clinicaltrials.gov NCT03699839

    SARS-CoV-2 viral load in nasopharyngeal swabs is not an independent predictor of unfavorable outcome

    Get PDF
    The aim was to assess the ability of nasopharyngeal SARS-CoV-2 viral load at first patient’s hospital evaluation to predict unfavorable outcomes. We conducted a prospective cohort study including 321 adult patients with confirmed COVID-19 through RT-PCR in nasopharyngeal swabs. Quantitative Synthetic SARS-CoV-2 RNA cycle threshold values were used to calculate the viral load in log10 copies/mL. Disease severity at the end of follow up was categorized into mild, moderate, and severe. Primary endpoint was a composite of intensive care unit (ICU) admission and/or death (n = 85, 26.4%). Univariable and multivariable logistic regression analyses were performed. Nasopharyngeal SARS-CoV-2 viral load over the second quartile (≄ 7.35 log10 copies/mL, p = 0.003) and second tertile (≄ 8.27 log10 copies/mL, p = 0.01) were associated to unfavorable outcome in the unadjusted logistic regression analysis. However, in the final multivariable analysis, viral load was not independently associated with an unfavorable outcome. Five predictors were independently associated with increased odds of ICU admission and/or death: age ≄ 70 years, SpO2, neutrophils > 7.5 × 103/”L, lactate dehydrogenase ≄ 300 U/L, and C-reactive protein ≄ 100 mg/L. In summary, nasopharyngeal SARS-CoV-2 viral load on admission is generally high in patients with COVID-19, regardless of illness severity, but it cannot be used as an independent predictor of unfavorable clinical outcome

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin ÎČ7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19
    • 

    corecore